
KESHAV SUTRAVE’S COMPREHENSIVE EXAM

This exam has four parts, each containing two problems. Do one problem from each part.

Problem 1.1 Let M be a manifold, let π : P → M be a principal G-bundle, let V be a finite dimensional
vector space, and let ρ : G→ End(V ) be a representation.

1. Explain what is meant by E = P ×ρ V , the vector bundle associated with ρ.

2. What do sections ψ ∈ Γ(E) correspond to in terms of P?

3. Give the definition of a connection on P .

4. Explain how a connection on P induces a covariant derivative ∇ on sections of E.

Problem 1.2 Let (M, g) be a closed, oriented 4-manifold, let P →M be a principal SU(2)-bundle over M ,
and let A be a connection on P .

1. Give the definition of FA, the curvature of A.

2. Explain what it means for A to be anti-self-dual.

3. Prove that anti-self-dual connections on P are absolute minimizers of the Yang-Mills energy

YM(A) =
1

2

ˆ
M

|FA|2volg.

4. Derive the Euler-Lagrange equation of YM and prove by direct computation that anti-self-dual
connections satisfy this equation.
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Problem 2.1 Let n ∈ {2, 3, . . . }. Consider the n-dimensional sphere

Sn := {x ∈ Rn+1 : |x| = 1}
equipped with the Riemannian metric g induced by the standard metric on Rn+1.

1. Determine a formula for the Levi-Civita connection of (Sn, g).

2. Compute the Riemann curvature tensor of (Sn, g).

3. Determine the geodesics of (Sn, g).

Problem 2.2 Let n ∈ {3, 4, . . . }.

1. State Bochner’s formula for 1-forms on a Riemannian manifold.

2. Does Tn admit a Riemannian metric with positive Ricci curvature?

Let (M, g) be a Riemannian manifold. Denote by ·[ : T ∗M → TM the isomorphism induced by the metric.
Bochner’s formula for Killing fields v ∈ Vect(M) reads

∇∗∇v − Ricg(v, ·)[ = 0.

3. Suppose that M is closed and Ricg < 0. Prove that the vector space

iso(M, g) := {v ∈ Vect(M) : Lvg = 0}
is trivial.

4. Prove either Bochner’s formula for harmonic 1-forms or Bochner’s formula for Killing fields.
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Problem 3.1 Let (M, g) be a closed Riemannian manifold. Denote by

∆ = dd∗ + d∗d : Ω•(M)→ Ω•(M)

the Laplace operator on differential forms. Denote by

e(t, x, y)

the heat kernel of ∆.

1. What sort of object is e(t, x, y)? (What kind of section of what bundle?)

2. State two properties of e(t, x, y) that uniquely characterize it.

3. Write down e(t, x, y) as a sum involving the eigenvalues and eigenfunctions of ∆.

Under the heat flow, an L2 p-form ω on M evolves in time t to a form ωt.

4. Write a formula for ωt(x) as an integral involving e(t, x, y).

5. Denote by H the space of harmonic forms on (M, g) and denote by πH the L2 orthogonal projection
onto H . Prove that

lim
t→∞

ωt = πH (ω).

Problem 3.2 Let

1. Let D be a closed densely defined operator on a Hilbert space H. Give the definition of the adjoint
of D.

2. Find the adjoint of i ∂∂x on L2[0, 1], originally defined on C∞0 (0, 1). Describe its self-adjoint extensions.

3. What does it mean for an operator to be compact?

4. State the two definitions of Fredholm operators and prove their equivalence.
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Problem 4.1

1. State the Riemann-Hurwitz formula.

2. Is there a non-constant holomorphic map f : CP 1 → T 2? If yes, write down a map; if no, prove why
not.

3. Is there a non-constant holomorphic map f : T 2 → CP 1? If yes, write down a map; if now, prove
why not.

4. Prove the Riemann-Hurwitz formula.

Problem 4.2

1. State the uniformization theorem.

2. Let Σ be a closed Riemann surface of genus g ≥ 2. Prove that the automorphism group

Aut(Σ) := {f : Σ→ Σ : f is biholomorphic}
is finite.

Hint: You can use problem 2.2.3 and the uniformization theorem.
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Solutions

Problem 1.1

1. Define the associated vector bundle by

E = P ×ρ V := P × V/ ∼
where (p, v) ∼ (pg−1, ρ(g)v) for g ∈ G. Since P/G = M , and the equivalence relates elements in P
which are G-related, this forms a vector bundle over M by the well-defined πE→M (p, v) := πP→M (p).

2. Sections of E can be identified with G-equivariant maps P → V :

Γ(E) := {ψ : M → E : πψ = idM} = {ψ̃ : P → V : ψ̃(pg−1) = ρ(g)ψ̃(p)}.
Understanding this comes from staring at the diagram

P P × V

M E

ψ̃

∼
π

∼
ψ

π

and identifying sections P → P × V with maps P → V .

3. There are different definitions of a connection on P . One is a choice of a G-equivariant horizontal
space H of TP . That is, for each p ∈ P , let Vp = ker dπ denote the “vertical subspace”. Then a
connection on P is a choice of H ⊂ TP such that
(i) (Horizontal) For each p ∈ P , the following direct sum decomposition holds

TpP = Hp ⊕ Vp.
(ii) (Equivariant) For each p ∈ P and g ∈ G,

Hpg−1 = (Rg)∗Hp

where Rg(p) = pg−1 is the G action on P .

4. Note that for π(p) = x ∈M , we haveHp
∼= TxM . In other words, each vectorXx ∈ TxM has a unique

horizontal lift X̃p ∈ Hp, with (πP )∗,p(X̃) = X. Meanwhile, a section ψ of E has a corresponding

G-equivariant map ψ̃ : P → V . So define

∇X(ψ) = dpψ̃(X̃).

Here d is a vector version of the exterior derivative d. This is definitely linear in X and using d it
satisfies the Liebniz rule on ψ. Since a covariant derivative ∇X should send Γ(E)→ Γ(E), we check
that the result is G-equivariant.

Let πP (p) = πP (pg−1) = x ∈ M , and let X̃ and (Rg)∗X̃ be the horizontal lifts of X at p and pg−1

respectively.

∇X(ψ)(pg−1) = dpg−1 ψ̃
(

dRg(X̃)
)

= dp(ψ̃ ◦Rg)(X̃) = dp(ρ(g)ψ̃)(X̃) = ρ(g)dp(ψ̃)(X̃).

Notice dp passes through the linear map ρ(g).



6 KESHAV SUTRAVE’S COMPREHENSIVE EXAM

Problem 1.2

1. Let g denote the lie algebra of SU(2), and let adP denote the adjoint bundle, the vector bundle over
M associated to the adjoint representation of G on g. Then A defines a covariant derivative ∇A on
sections of adP . So ∇A : Ω0(adP )→ Ω1(adP ). One can extend to an exterior derivative dA (equal
to ∇A on Γ(adP ) = Ω0

M (adP ))

Ω0
M (adP )

dA−−→ Ω1
M (adP )

dA−−→ Ω2
M (adP )

dA−−→ · · ·

by requiring that

dA(ω ∧ ψ) = dω ∧ ψ + (−1)kω ∧ dAψ

for ω ∈ ΩkM and ψ ∈ ΩlM (E).

We define FA = d2
A in the following sense: The composition dA ◦ dA turns out to be tensorial. For

example, if ψ ∈ Ω0
M (E), then

dAdA(fψ) = dA(df ⊗ ψ + fdAψ) = −df ∧ dAψ + df ∧ dAψ + fdAdAψ = fdAdAψ

So there is a (unique) tensor FA ∈ Ω2(End(adP )) such that

dAdAψ = FA ∧ ψ

where we wedge the forms and also act algebraically.

2. A connection A is called anti-self-dual if it’s curvature is an anti-self-dual 2-form, i.e. if ? denotes
the Hodge star (note ? extends to vector bundle valued forms Ωk(E)→ Ωn−k(E)) then A is ASD if

?FA = −FA.

3. The 2nd chern class of a vector bundle E can be computed using the curvature of any connection
on E

−4π2c2(E)(M) = −1

2

ˆ
M

tr(FA ∧ FA).

A matrix B ∈ su(2) is skew-symmetric, so the norm

|B|2 = tr(BtB) = −tr(B2).

In YM we combine this with the norm on forms

〈ω, τ〉volg = ω ∧ ?τ

Thus, using that ?2 = 1 for 2-forms

−1

2

ˆ
M

tr(FA ∧ FA) = −1

2

ˆ
M

tr(FA ∧ ?(F+
A − F

−
A )) =

1

2

ˆ
M

∣∣F−A ∣∣2 − ∣∣F+
A

∣∣2 volg

where F±A are the (orthogonal) self-dual and anti-self-dual components of FA. Now we have∣∣F−A ∣∣2 − ∣∣F+
A

∣∣2 ≤ ∣∣F−A ∣∣2 +
∣∣F+
A

∣∣2
−4π2c2(E)(M) ≤ YM(A)

Since the chern class is topological and thus independent of the choice of connection A, this establishes
−4π2c2(E)(M) as a lower bound for YM, and we have equality (i.e. the minimum is achieved) for
F+
A ≡ 0 (anti-self-dual connections).
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4. Consider family of connections A+ ta where A is a connection and a ∈ Ω1(adP ). Then

FA+ta = FA + tdAa+
t2

2
[a ∧ a]

So the energy

YM(A+ ta) =
1

2

ˆ
M

〈FA+ta, FA+ta〉volg

= YM(A) + t

ˆ
M

〈FA,dAa〉volg + t2(· · · )

d

dt

∣∣∣∣
t=0

YM(A+ ta) = 〈FA,dAa〉L2 = 〈d∗AFA, a〉L2

We have a critical point if

d∗AFA = 0.

Now if FA is ASD, then

d∗AFA = ?dA ? FA = − ? dAFA = 0

by the Bianchi identity.

Problem 2.1

1. For a submanifold S ⊂M the Levi-Civita connection for the inherited metric looks like projection

∇Sϕ = πM→S∇Mϕ.

We claim, for p ∈ Sn, X ∈ TpSn and Y a vector field on Sn near p, that

∇XY = ∂XY + 〈X,Y 〉p

where the innerproduct is in Rn+1, p is thought of as a vector in Rn+1, and ∂XY is the standard
component differentiation, the connection in Rn+1. Thus we must prove that −〈X,Y 〉p is the normal
part of ∂XY . Since p is a unit vector normal to TpS

n, the normal part is given by

〈∂XY, p〉p = (X〈Y, p〉 − 〈Y, ∂Xp〉)p
= 0− 〈Y,X〉p

where we used that p is the “position vector”, i.e. the identity function on Sn ⊂ Rn+1, and Y is
always orthogonal to p.

2. We can use this to compute the curvature

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

for vector X,Y, Z ∈ TpSn. In this formula we must choose extensions to vector fields, but since R is

a tensor it is independent of the choice of extensions, so we choose the constant extensions to Rn+1.



8 KESHAV SUTRAVE’S COMPREHENSIVE EXAM

Then derivatives in Rn+1 vanish everywhere, e.g. ∂XY ≡ 0. Also remember that p ⊥ TpSn.

∇X∇Y Z = ∇X(∂Y Z + 〈Y, Z〉p)
= ∂X(〈Y,Z〉p) + 〈X, 〈Y,Z〉p〉
= ∂X〈Y,Z〉p+ 〈Y,Z〉X + 〈Y, Z〉〈X, p〉
= 〈Y,Z〉X.

So

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

= ∇X∇Y Z −∇Y∇XZ
= 〈Y, Z〉X − 〈X,Z〉Y

or

〈R(X,Y )Z,W 〉 = 〈X,W 〉〈Y, Z〉 − 〈X,Z〉〈Y,W 〉.

3. Let γ : I → Sn ⊂ Rn+1 be a geodesic with unit speed. Using part 1 again, the geodesic equation is

0 = ∇γ′(t)γ′(t)
= ∂γ′(t)γ

′(t) + 〈γ′(t), γ′(t)〉γ(t)

= γ′′(t) + γ(t)

The solutions to this (familiar ODE) in Rn+1 are

γ(t) = γ(0) cos(t) + γ′(0) sin(t).

The path is a unit circle in the plane spanned by the vectors γ(0), γ′(0), a great circle (a plane
intersected with the sphere).

Problem 2.2

1.

Problem 3.1

1. The heat kernel is a (time-dependent) “double-form”. Consider the bundle formed by the two
projections M ×M →M :

T ∗M π∗1(T ∗M)⊗ π∗2(T ∗M) T ∗M

M R+ ×M ×M M
π1 π2

The heat kernel e is a section of this bundle. For each t ∈ R+ and x, y ∈M , e(t, x, y) is an element
of T ∗xM ⊗ T ∗yM .
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2. The two properties defining the heat kernel:

(i) (∂t + ∆x)e(t, x, y) = 0

(ii) limt→0

´
M
〈e(t, x, y), ω(y)〉ydvolg(y) = ω(x)

4. We will do this part first. The time evolution is

ωt(x) = e−t∆ω(x) :=

ˆ
M

〈e(t, x, y), ω(y)〉y volg(y)

3. Let λi and ωi be the eigenvalues and eigenfunctions of ∆, so

∆ωi = λiωi

e−t∆ωi = e−tλiωi

Let ω ∈ L2(M) and write

ω =
∑

aiωi

ai = 〈ω, ωi〉L2 .

Evolving through time,

ωt(x) = e−t∆ω(x)

=
∑
i

aie
−tλiωi(x)

=
∑
i

(ˆ
M

〈ωi(y), ω(y)〉 volg(y)

)
e−tλiωi(x)

=

ˆ
M

〈(∑
e−tλiωi(x)ωi(y)

)
, ω(y)

〉
y

volg(y)

Thus following part 4,

e(t, x, y) =
∑
i

e−tλiωi(x)ωi(y)

5. Note that each λi ≥ 0. Using the eigenfunction decomposition

lim
t→∞

ωt = lim
t→∞

∑
i

aie
−tλiωi =

∑
i,λi=0

aiωi.

But λi = 0 is precisely the harmonic condition.

Problem 3.2

1. The domain of the adjoint is defined to be

dom (D∗) = {y ∈ H : x 7→ (Dx, y) is bounded on dom (D)}
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If y ∈ dom (D∗) this means precisely that there is some Cy such that

(Dx, y) ≤ Cy‖x‖

Then it extends to be bounded on dom (D) = H.
Another equivalent definition of the domain of D∗ is that there is an element, which we call D∗y
(necessarily unique because D is densely defined), such that for every x ∈ dom (D),

(Dx, y) = (x,D∗y).

This is the same thing because of the Riesz representation theorem on dom (D) = H.

2. The domain of the adjoint is defined to be

dom (D∗) = {y ∈ H : x 7→ (Dx, y) is bounded on dom (D)}
= {y ∈ H : There exists z ∈ H, such that (Dx, y) = (x, z) for all x ∈ dom (D)}

These are equivalent by the Riesz representation theorem on dom (D) = H. We say z = D∗y; such
a z is unique by the density of dom (D).

3. Let’s first deal with C∞0 functions and figure out what the adjoint should look like. Let f, g ∈ C∞0 .
Then by integration by parts,

(Df, g) =

ˆ
i

(
∂

∂x
f

)
g = −

ˆ
if

(
∂

∂x
g

)
=

ˆ
f

(
i
∂

∂x
g

)
= (f,Dg).

In other words, D is a symmetric operator (though this can be guessed from the rest of the question).

4. A bounded operator K : X → Y is called compact if the image of the unit ball is precompact in Y ,
that is, for every bounded sequence {xn} ⊂ X, the image sequence {Kxn} has a subsequence which
converges to some y ∈ Y (not necessarily in the image of the ball).

5. Let T : X → Y be bounded. Then T is Fredholm if either of the following hold.
(a) The range of T is closed, and kerT, cokerT are finite-dimensional.
(b) There is an operator S : Y → X such that KX := IdX − ST and KY := IdY − TS are compact

operators on X and Y respectively (i.e. T is invertible up to a compact operator).

(For Hilbert spaces) Assume kerT, cokerT ∼= R(T )⊥ are finite dimensional, (the range is closed as
a consequence). Restricting spaces, T : (kerT )⊥ → R(T ) = (cokerT )⊥ is bijective, and thus has an
inverse function T−1 (also linear since T is). Moreover, T is closed implies that T−1 is closed, and
domT−1 = R(T ) is closed by assumption, so the closed graph theorem tells us that T−1 is bounded.

Extending by 0, we define the bounded operator S : Y → X as

S := (T−1 ⊕ 0) :
(
R(T )⊕ cokerT

)
−→ (kerT )⊥ ⊆ X.

Now KX and KY are the projections to kerT and cokerT respectively, and thus they are finite
rank ( =⇒ compact) operators.

Conversely, suppose T is invertible up to a compact operator. Let us show that kerT is finite-
dimensional by showing that the unit ball B := BX(0, 1) ∩ kerT is compact.
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Problem 4.1

1. For a proper nonconstant holomorphic map f : X → Y of degree d between compact Riemann
surfaces,

2− 2gX = d(2− 2gY )−Rf
where Rf is the ramification index: Locally around every point x ∈ X, f can be represented by
z 7→ zdx for some integer dx ≥ 1. Then

Rf =
∑
x∈X

(dx − 1).

(The integer dx is greater than 1 only for a discrete set of points; this above is really a finite sum
over all the critical points of f .)

2. No: Here gX = 0, gY = 1, so if such a map existed, then we would have

2− 0 = d(0)−Rf ,
but Rf ≥ 0.

3. Yes: What we need is a map that satisfies

2− 2(1) = d(2− 0)−Rf
Rf = 2d

1. For a lattice Λ ⊂ C, the Weierstrass ℘Λ function

℘Λ(u) =
1

u2
+

∑
λ∈Λ\{0}

1

(u− λ)2
− 1

λ2

is a doubly periodic meromorphic function on C which descends to a meromorphic function on
T 2 ∼= C/Λ with a double pole. (Is it injective otherwise, so that d = 1?)

2. By Riemann-Roch, there exists a function on T2 with (... review condition on zeros/poles ...)
3. (Algebraic Geometry - also what I understand the least) For an elliptic curve T 2 ∼= X ⊂ CP 2,

one can project using a point not on the curve down to CP 1 ⊂ CP 2.


